Tech
What is Stripe? How does it work to process payments?
Published
3 months agoon

Get up to 30%* off! Get going with GoDaddy!
Offering convenient, secure payment processing is a critical component of any online store, but it can be difficult to evaluate the different options available to small businesses today. In this article, you’ll gain a deeper understanding of what is Stripe, how it works, how to set it up, its key features and benefits and how it compares to other options. After reading, you should have a clear understanding of how Stripe works and whether it’s the right payment processing system for your small business.
What is Stripe?
Stripe is an online payment processor and payment gateway that lets customers securely pay online for products and services. When customers are ready to make an online purchase, they can submit their payment through Stripe, which processes the payment, communicates the success or failure of the transaction back to the customer, and ensures that the funds are properly transferred to the business.
Stripe has developed integrations with popular ecommerce website builders (such as WooCommerce and Shopify) and also offers a suite of tools and APIs to allow businesses more flexibility in how they integrate its payment functionality into their site. Stripe is a popular payment processing system that is used by businesses of all sizes, from Atlassian and Lyft to small ecommerce stores.
Payment methods accepted by Stripe
Stripe supports a wide range of payment methods, so it’s a very convenient option for your customers. Stripe accepts:
- All major credit and debit cards (e.g., Visa, Mastercard, American Express, Discover, etc.)
- ACH payments (i.e. bank account transfers)
- Digital wallets (e.g., Apple Pay, Google Pay, etc.)
It can also support buy now, pay later style services (e.g., AfterPay). Stripe payment methods work both online and in-person, so it is a great choice for businesses that have online and brick-and-mortar storefronts.
How does Stripe work to process payments?
Because Stripe acts as both a payment processor and a payment gateway, it covers everything you need to process payments online. Here’s a brief overview of how Stripe works:
1. Customer submits payment information.
The customer shares their credit card, debit card, or other payment information details, either on your online store’s checkout page or using a POS terminal (e.g., a card reader) at an in-person retail location.
2. Stripe securely transmits payment information to the acquiring bank.
Once the customer submits their payment information, Stripe encrypts these sensitive details and securely sends them to the bank that will process the transaction (i.e. the acquiring bank). Stripe uses several different acquiring banks, such as Wells Fargo. Merchants don’t need to have a dedicated account with the acquiring bank — you can benefit by using Stripe’s merchant account for these transactions.
3. Acquiring bank connects with the issuing bank.
When the acquirer receives the payment request, it connects with the issuing bank associated with the customer’s payment method (for example, if your customer has a Visa card from Citi, then Citi is the issuing bank).
4. Issuing bank approves payment and transfers funds to the acquiring bank.
If the customer has available funds, the issuing bank approves and authorizes payment, transfers funds, and communicates this back to the acquiring bank.
5. Stripe communicates success to the customer.
The acquiring bank communicates success to Stripe, which passes this message along to the customer (e.g., customer sees an “Order successful!” message on the checkout page). From the customer’s point of view, this entire process takes only a few seconds.
6. Stripe transfers payment to your bank account.
Once the issuing bank finalizes its approval (often the same day), Stripe will payout to your business bank account, minus its payment processing fee. It can take a few days for funds to hit your bank account, and some merchants use payout schedules that transfer payments on a regular basis (e.g., weekly).
How to set up and use Stripe payment processing
Now that you know how Stripe works, let’s cover how to use Stripe as a merchant. We’ll primarily cover how to set up Stripe for an ecommerce website.
Step 1: Sign up for a Stripe account
If you haven’t already done so, you’ll need to start by signing up for a Stripe account. This is a relatively simple process where you provide some basic contact details, business information, and banking details. Once your account is verified, you can continue on to step 2, or spend some time configuring additional settings, such as two-factor authentication.
Step 2: Integrate Stripe with your online store
Integrating Stripe with your online store will vary based on your ecommerce platform. Fortunately, Stripe has pre-built integrations with most major ecommerce platforms, such as WooCommerce, Shopify, BigCommerce, and more. This means that you can start using Stripe on your online store with just a few clicks, without the assistance of a developer.
If you have a completely custom site not built on an ecommerce platform, you’ll need the help of a developer (if you’re not comfortable coding) to build a direct integration with Stripe on your site. Stripe offers extensive developer documentation to support custom builds.
Step 3: Run a test transaction.
Before deploying Stripe to your customers, it’s a good idea to run a test transaction to ensure that everything is working correctly. The steps here can vary based on your ecommerce platform, but you’ll likely be able to enable a test mode to see if Stripe can connect and communicate correctly without actually processing a live transaction. Alternatively, you can test a live transaction and then refund yourself from your store dashboard.
This will give you a chance to experience what it’s like to use Stripe as a customer, as well as see how those payments show up in your Stripe Dashboard.
Step 4: Start selling!
If your test transaction went off without a hitch, you’re ready to start processing payments with Stripe. Disable any test mode you might have turned on for the previous step, and start selling!
Benefits of Stripe
Now that you know how Stripe works and how you can set it up on your online store, let’s explore a few of Stripe’s key benefits for your small business.
Integrations with ecommerce platforms and website builders
As previously mentioned, Stripe has integrations with many popular ecommerce platforms and website builders. This is a huge advantage for small businesses since it means you can get up and running with Stripe on your site without touching a single line of code. In addition to the speed of setup, this also means you can expect great support and continued quality-of-life improvements as those integrations are improved over time.
Endlessly customizable and developer-friendly
While there are many pre-built Stripe apps and plugins, there may come a time when you need to tweak Stripe to meet your site’s specific needs. In those cases, you’ll be pleased to know that Stripe is well-known for being developer-friendly and open to customization. Stripe has great documentation, which makes it easier for a developer to customize Stripe to your specifications.
Seamless payment experience
Your site’s payment experience can have a marked impact on your conversion rates (i.e. the rate at which customers make a purchase on your site) — a seamless experience can improve conversions, while a clunky or slow process can cause customers to abandon their purchases. Stripe provides a streamlined and user-friendly payment experience, ensuring that more customers who start checkout are able to complete it successfully.
Fast onboarding and extensive reporting
As you likely noticed during the setup instructions, it’s easy to onboard as a new Stripe customer. Most notably, Stripe customers don’t have to go through the lengthy and difficult process of setting up a merchant account with an acquiring bank — they’ll automatically use Stripe’s own merchant account for their payment processing. This is a huge time saver for small business owners!
Stripe users also benefit from its extensive reporting capabilities through the Stripe Dashboard. You’ll be able to clearly track your payment activity, transaction fees, and payouts with Stripe’s reporting, giving you greater clarity into the health of your business.
Are Stripe payments safe?
Stripe has extensive security and fraud prevention features, making it one of the safer options for accepting payments on your store. Stripe is a certified Level 1 PCI Service Provider, which means it adheres to very strict security standards set by the PCI Security Standards Council. You can feel confident that your customers’ payment information is safe when processed by Stripe.
Online fraud is a real problem for ecommerce stores, but Stripe offers advanced fraud detection through its Stripe Radar service. This feature, built directly into Stripe, can proactively identify and prevent fraudulent charges, which protects your customers and your business. Additionally, Stripe can support features like:
These bring even more powerful fraud prevention, but please note that utilizing these features may impact your transaction fees.
Is Stripe right for your business?
Not all businesses are created equal! There are a number of factors that will determine if Stripe is the right payment processing solution for your business. Stripe is a great fit for small businesses that:
- Use popular ecommerce platforms. Stripe’s direct integrations with WooCommerce and Shopify make it a great option for businesses built on those platforms. You won’t have to spend any of your valuable time or resources building or maintaining a connection with Stripe.
- Have security or fraud concerns. If you’ve been the victim of fraudulent charges and bad actors before, you know how costly it can be to your business reputation and bottom line. Stripe’s sophisticated fraud prevention and top-notch security make it a great choice for security-conscious merchants.
- Sell internationally. Stripe is supported in over 40 countries, so it is a smart option for businesses with international sales.
- Care about customization. Because Stripe is so developer-friendly, it will be attractive to businesses that want the option to customize Stripe to meet their store’s specific needs.
- Want to give their customers options. Stripe supports a wide variety of payment methods (credit cards, debit cards, ACH payments, digital wallets, buy now / pay later, and more) so it gives customers a lot of flexibility around how to pay for your products and services.
However, Stripe isn’t right for everyone. Stripe cannot be used for selling certain high-risk products (check out their list of restricted businesses to ensure your products and services are supported by Stripe). Additionally, Stripe charges a significant transaction fee of 2.9% + 30¢ per online transaction, so it may not be a cost-effective option for every business.
What are some Stripe alternatives?
While Stripe payment processing is a popular and reliable solution, there are alternatives that might be a better, more affordable fit for your business. These options vary based on their transaction fees, customizability, support for international sales and integrations with other apps used by your online store. Some examples include:
When considering a payment processing system, be sure to consider these transaction fees as well as which features are most important to your business. Ideally, you’ll choose a payment processing system that offers the features you need at a great rate, so that you aren’t overpaying for capabilities that aren’t important to your business.

Many companies are experimenting with ChatGPT and other large language or image models. They have generally found them to be astounding in terms of their ability to express complex ideas in articulate language. However, most users realize that these systems are primarily trained on internet-based information and can’t respond to prompts or questions regarding proprietary content or knowledge.
Leveraging a company’s propriety knowledge is critical to its ability to compete and innovate, especially in today’s volatile environment. Organizational Innovation is fueled through effective and agile creation, management, application, recombination, and deployment of knowledge assets and know-how. However, knowledge within organizations is typically generated and captured across various sources and forms, including individual minds, processes, policies, reports, operational transactions, discussion boards, and online chats and meetings. As such, a company’s comprehensive knowledge is often unaccounted for and difficult to organize and deploy where needed in an effective or efficient way.
Emerging technologies in the form of large language and image generative AI models offer new opportunities for knowledge management, thereby enhancing company performance, learning, and innovation capabilities. For example, in a study conducted in a Fortune 500 provider of business process software, a generative AI-based system for customer support led to increased productivity of customer support agents and improved retention, while leading to higher positive feedback on the part of customers. The system also expedited the learning and skill development of novice agents.
Like that company, a growing number of organizations are attempting to leverage the language processing skills and general reasoning abilities of large language models (LLMs) to capture and provide broad internal (or customer) access to their own intellectual capital. They are using it for such purposes as informing their customer-facing employees on company policy and product/service recommendations, solving customer service problems, or capturing employees’ knowledge before they depart the organization.
These objectives were also present during the heyday of the “knowledge management” movement in the 1990s and early 2000s, but most companies found the technology of the time inadequate for the task. Today, however, generative AI is rekindling the possibility of capturing and disseminating important knowledge throughout an organization and beyond its walls. As one manager using generative AI for this purpose put it, “I feel like a jetpack just came into my life.” Despite current advances, some of the same factors that made knowledge management difficult in the past are still present.
The Technology for Generative AI-Based Knowledge Management
The technology to incorporate an organization’s specific domain knowledge into an LLM is evolving rapidly. At the moment there are three primary approaches to incorporating proprietary content into a generative model.
Training an LLM from Scratch
One approach is to create and train one’s own domain-specific model from scratch. That’s not a common approach, since it requires a massive amount of high-quality data to train a large language model, and most companies simply don’t have it. It also requires access to considerable computing power and well-trained data science talent.
One company that has employed this approach is Bloomberg, which recently announced that it had created BloombergGPT for finance-specific content and a natural-language interface with its data terminal. Bloomberg has over 40 years’ worth of financial data, news, and documents, which it combined with a large volume of text from financial filings and internet data. In total, Bloomberg’s data scientists employed 700 tokens, or about 350 billion words, 50 billion parameters, and 1.3 million hours of graphics processing unit time. Few companies have those resources available.
Fine-Tuning an Existing LLM
A second approach is to “fine-tune” train an existing LLM to add specific domain content to a system that is already trained on general knowledge and language-based interaction. This approach involves adjusting some parameters of a base model, and typically requires substantially less data — usually only hundreds or thousands of documents, rather than millions or billions — and less computing time than creating a new model from scratch.
Google, for example, used fine-tune training on its Med-PaLM2 (second version) model for medical knowledge. The research project started with Google’s general PaLM2 LLM and retrained it on carefully curated medical knowledge from a variety of public medical datasets. The model was able to answer 85% of U.S. medical licensing exam questions — almost 20% better than the first version of the system. Despite this rapid progress, when tested on such criteria as scientific factuality, precision, medical consensus, reasoning, bias and harm, and evaluated by human experts from multiple countries, the development team felt that the system still needed substantial improvement before being adopted for clinical practice.
The fine-tuning approach has some constraints, however. Although requiring much less computing power and time than training an LLM, it can still be expensive to train, which was not a problem for Google but would be for many other companies. It requires considerable data science expertise; the scientific paper for the Google project, for example, had 31 co-authors. Some data scientists argue that it is best suited not to adding new content, but rather to adding new content formats and styles (such as chat or writing like William Shakespeare). Additionally, some LLM vendors (for example, OpenAI) do not allow fine-tuning on their latest LLMs, such as GPT-4.
Prompt-tuning an Existing LLM
Perhaps the most common approach to customizing the content of an LLM for non-cloud vendor companies is to tune it through prompts. With this approach, the original model is kept frozen, and is modified through prompts in the context window that contain domain-specific knowledge. After prompt tuning, the model can answer questions related to that knowledge. This approach is the most computationally efficient of the three, and it does not require a vast amount of data to be trained on a new content domain.
Morgan Stanley, for example, used prompt tuning to train OpenAI’s GPT-4 model using a carefully curated set of 100,000 documents with important investing, general business, and investment process knowledge. The goal was to provide the company’s financial advisors with accurate and easily accessible knowledge on key issues they encounter in their roles advising clients. The prompt-trained system is operated in a private cloud that is only accessible to Morgan Stanley employees.
While this is perhaps the easiest of the three approaches for an organization to adopt, it is not without technical challenges. When using unstructured data like text as input to an LLM, the data is likely to be too large with too many important attributes to enter it directly in the context window for the LLM. The alternative is to create vector embeddings — arrays of numeric values produced from the text by another pre-trained machine learning model (Morgan Stanley uses one from OpenAI called Ada). The vector embeddings are a more compact representation of this data which preserves contextual relationships in the text. When a user enters a prompt into the system, a similarity algorithm determines which vectors should be submitted to the GPT-4 model. Although several vendors are offering tools to make this process of prompt tuning easier, it is still complex enough that most companies adopting the approach would need to have substantial data science talent.
However, this approach does not need to be very time-consuming or expensive if the needed content is already present. The investment research company Morningstar, for example, used prompt tuning and vector embeddings for its Mo research tool built on generative AI. It incorporates more than 10,000 pieces of Morningstar research. After only a month or so of work on its system, Morningstar opened Mo usage to their financial advisors and independent investor customers. It even attached Mo to a digital avatar that could speak out its answers. This technical approach is not expensive; in its first month in use, Mo answered 25,000 questions at an average cost of $.002 per question for a total cost of $3,000.
Content Curation and Governance
As with traditional knowledge management in which documents were loaded into discussion databases like Microsoft Sharepoint, with generative AI, content needs to be high-quality before customizing LLMs in any fashion. In some cases, as with the Google Med-PaLM2 system, there are widely available databases of medical knowledge that have already been curated. Otherwise, a company needs to rely on human curation to ensure that knowledge content is accurate, timely, and not duplicated. Morgan Stanley, for example, has a group of 20 or so knowledge managers in the Philippines who are constantly scoring documents along multiple criteria; these determine the suitability for incorporation into the GPT-4 system. Most companies that do not have well-curated content will find it challenging to do so for just this purpose.
Morgan Stanley has also found that it is much easier to maintain high quality knowledge if content authors are aware of how to create effective documents. They are required to take two courses, one on the document management tool, and a second on how to write and tag these documents. This is a component of the company’s approach to content governance approach — a systematic method for capturing and managing important digital content.
At Morningstar, content creators are being taught what type of content works well with the Mo system and what does not. They submit their content into a content management system and it goes directly into the vector database that supplies the OpenAI model.
Quality Assurance and Evaluation
An important aspect of managing generative AI content is ensuring quality. Generative AI is widely known to “hallucinate” on occasion, confidently stating facts that are incorrect or nonexistent. Errors of this type can be problematic for businesses but could be deadly in healthcare applications. The good news is that companies who have tuned their LLMs on domain-specific information have found that hallucinations are less of a problem than out-of-the-box LLMs, at least if there are no extended dialogues or non-business prompts.
Companies adopting these approaches to generative AI knowledge management should develop an evaluation strategy. For example, for BloombergGPT, which is intended for answering financial and investing questions, the system was evaluated on public dataset financial tasks, named entity recognition, sentiment analysis ability, and a set of reasoning and general natural language processing tasks. The Google Med-PaLM2 system, eventually oriented to answering patient and physician medical questions, had a much more extensive evaluation strategy, reflecting the criticality of accuracy and safety in the medical domain.
Life or death isn’t an issue at Morgan Stanley, but producing highly accurate responses to financial and investing questions is important to the firm, its clients, and its regulators. The answers provided by the system were carefully evaluated by human reviewers before it was released to any users. Then it was piloted for several months by 300 financial advisors. As its primary approach to ongoing evaluation, Morgan Stanley has a set of 400 “golden questions” to which the correct answers are known. Every time any change is made to the system, employees test it with the golden questions to see if there has been any “regression,” or less accurate answers.
Legal and Governance Issues
Legal and governance issues associated with LLM deployments are complex and evolving, leading to risk factors involving intellectual property, data privacy and security, bias and ethics, and false/inaccurate output. Currently, the legal status of LLM outputs is still unclear. Since LLMs don’t produce exact replicas of any of the text used to train the model, many legal observers feel that “fair use” provisions of copyright law will apply to them, although this hasn’t been tested in the courts (and not all countries have such provisions in their copyright laws). In any case, it is a good idea for any company making extensive use of generative AI for managing knowledge (or most other purposes for that matter) to have legal representatives involved in the creation and governance process for tuned LLMs. At Morningstar, for example, the company’s attorneys helped create a series of “pre-prompts” that tell the generative AI system what types of questions it should answer and those it should politely avoid.
User prompts into publicly-available LLMs are used to train future versions of the system, so some companies (Samsung, for example) have feared propagation of confidential and private information and banned LLM use by employees. However, most companies’ efforts to tune LLMs with domain-specific content are performed on private instances of the models that are not accessible to public users, so this should not be a problem. In addition, some generative AI systems such as ChatGPT allow users to turn off the collection of chat histories, which can address confidentiality issues even on public systems.
In order to address confidentiality and privacy concerns, some vendors are providing advanced and improved safety and security features for LLMs including erasing user prompts, restricting certain topics, and preventing source code and propriety data inputs into publicly accessible LLMs. Furthermore, vendors of enterprise software systems are incorporating a “Trust Layer” in their products and services. Salesforce, for example, incorporated its Einstein GPT feature into its AI Cloud suite to address the “AI Trust Gap” between companies who desire to quickly deploy LLM capabilities and the aforementioned risks that these systems pose in business environments.
Shaping User Behavior
Ease of use, broad public availability, and useful answers that span various knowledge domains have led to rapid and somewhat unguided and organic adoption of generative AI-based knowledge management by employees. For example, a recent survey indicated that more than a third of surveyed employees used generative AI in their jobs, but 68% of respondents didn’t inform their supervisors that they were using the tool. To realize opportunities and manage potential risks of generative AI applications to knowledge management, companies need to develop a culture of transparency and accountability that would make generative AI-based knowledge management systems successful.
In addition to implementation of policies and guidelines, users need to understand how to safely and effectively incorporate generative AI capabilities into their tasks to enhance performance and productivity. Generative AI capabilities, including awareness of context and history, generating new content by aggregating or combining knowledge from various sources, and data-driven predictions, can provide powerful support for knowledge work. Generative AI-based knowledge management systems can automate information-intensive search processes (legal case research, for example) as well as high-volume and low-complexity cognitive tasks such as answering routine customer emails. This approach increases efficiency of employees, freeing them to put more effort into the complex decision-making and problem-solving aspects of their jobs.
Some specific behaviors that might be desirable to inculcate — either though training or policies — include:
- Knowledge of what types of content are available through the system;
- How to create effective prompts;
- What types of prompts and dialogues are allowed, and which ones are not;
- How to request additional knowledge content to be added to the system;
- How to use the system’s responses in dealing with customers and partners;
- How to create new content in a useful and effective manner.
Both Morgan Stanley and Morningstar trained content creators in particular on how best to create and tag content, and what types of content are well-suited to generative AI usage.
“Everything Is Moving Very Fast”
One of the executives we interviewed said, “I can tell you what things are like today. But everything is moving very fast in this area.” New LLMs and new approaches to tuning their content are announced daily, as are new products from vendors with specific content or task foci. Any company that commits to embedding its own knowledge into a generative AI system should be prepared to revise its approach to the issue frequently over the next several years.
While there are many challenging issues involved in building and using generative AI systems trained on a company’s own knowledge content, we’re confident that the overall benefit to the company is worth the effort to address these challenges. The long-term vision of enabling any employee — and customers as well — to easily access important knowledge within and outside of a company to enhance productivity and innovation is a powerful draw. Generative AI appears to be the technology that is finally making it possible.
Growing a Business
11 Ways Tech Adoption Impacts your Small Biz Growth
Published
3 months agoon
July 5, 2023
Small businesses rely heavily on technology to drive development and innovation. Adopting the correct technological solutions can help to streamline processes, increase efficiency, improve client experiences, and create a competitive advantage in the market.
In this post, we will look at how technology contributes to the growth and success of small enterprises.
1. Streamlining Operations
Implementing small business technology solutions can automate and streamline various aspects of small business operations. This includes using project management software, customer relationship management (CRM) systems, inventory management tools, and accounting software. Streamlining operations not only saves time and reduces manual errors but also allows small businesses to allocate resources more efficiently.
Tip: Regularly assess your business processes and identify areas that can be automated or improved with technology. This continuous evaluation ensures that your technology solutions remain aligned with your evolving business needs.
2. Enhancing Customer Engagement
Technology enables small businesses to engage and connect with their customers more effectively. Social media platforms, email marketing software, and customer service tools allow businesses to communicate and build relationships with their target audience. Customer relationship management systems help businesses track customer interactions and preferences, providing insights to deliver personalized experiences and improve customer satisfaction.
Tip: Leverage data from customer interactions to create targeted marketing campaigns and personalized offers. Use automation tools to send timely and relevant messages to your customers, enhancing their engagement and loyalty.
3. Expanding Market Reach
The internet and digital marketing platforms provide small businesses with the opportunity to reach a broader audience beyond their local market. Creating a professional website, utilizing search engine optimization (SEO), and leveraging online advertising channels allow small businesses to attract and engage customers from different regions or even globally. E-commerce platforms enable businesses to sell products or services online, further expanding their market reach.
Tip: Continuously monitor and optimize your online presence to ensure your website is discoverable and user-friendly. Leverage analytics tools to track website traffic, visitor behavior, and conversion rates to make data-driven improvements.
4. Improving Decision-Making with Data
Technology provides small businesses with access to valuable data and analytics, enabling informed decision-making. Through data analysis, businesses can gain insights into customer behavior, market trends, and operational performance. This data-driven approach allows small businesses to make strategic decisions, optimize processes, and identify growth opportunities more effectively.
Tip: Invest in data analytics tools and dashboards that can consolidate and visualize your business data. Regularly review and analyze the data to uncover patterns, identify bottlenecks, and make data-backed decisions to drive growth.
5. Facilitating Remote Work and Collaboration
Advancements in technology have made remote work and collaboration more feasible for small businesses. Cloud-based tools, project management software, and communication platforms enable teams to work together efficiently, regardless of geographical location. This flexibility opens up opportunities to access talent from anywhere, increase productivity, and reduce overhead costs.
Tip: Establish clear communication protocols and project management workflows to ensure effective collaboration among remote teams. Use video conferencing tools for virtual meetings and foster a culture of transparency and accountability to maintain productivity and engagement.
6. Embracing Emerging Technologies
Small businesses should stay informed about emerging technologies that have the potential to transform their industries. Technologies such as artificial intelligence, machine learning, blockchain, and the Internet of Things can offer new opportunities for growth and innovation. Being open to adopting and integrating these technologies into your business strategy can give you a competitive advantage.
7. Data Security and Privacy
Data security and privacy are critical considerations when using technology in small businesses. Implement robust cybersecurity measures, such as firewalls, encryption, and secure data storage, to protect sensitive customer information and intellectual property. Regularly update software and educate employees on best practices for data security to minimize the risk of data breaches.
8. Customer Relationship Management (CRM) Systems
A dedicated CRM system can help small businesses manage customer relationships more efficiently. It allows businesses to track customer interactions, store contact information, and monitor sales pipelines. Utilize CRM software to streamline sales and marketing processes, personalize customer interactions, and nurture long-term customer loyalty.
9. Continuous Learning and Skill Development
Encourage continuous learning and skill development among employees to keep up with technological advancements. Provide access to online courses, training resources, and workshops to enhance digital literacy and proficiency. Embrace a culture of learning and innovation to ensure your small business remains adaptable and competitive in the digital age.
10. Scalable and Flexible Technology Solutions
Choose technology solutions that are scalable and flexible to accommodate your growing business needs. Consider cloud-based software and platforms that allow you to easily scale up or down as your business evolves. This scalability enables small businesses to adapt to changing demands and seize new opportunities without significant disruptions.
11. Regular Technology Assessments
Regularly assess your technology infrastructure to ensure it aligns with your business goals and remains up to date. Conduct technology audits to identify areas for improvement, eliminate outdated systems, and explore new technologies that can drive growth. Stay proactive in evaluating and optimizing your technology stack to maximize its impact on your small business.
Conclusion
Technology serves as a catalyst for small business growth. By leveraging technology effectively and staying agile in an ever-evolving digital landscape, small businesses can unlock their full potential, adapt to changing customer expectations, and drive sustainable growth.

The competitive nature of AI development poses a dilemma for organizations, as prioritizing speed may lead to neglecting ethical guidelines, bias detection, and safety measures. Known and emerging concerns associated with AI in the workplace include the spread of misinformation, copyright and intellectual property concerns, cybersecurity, data privacy, as well as navigating rapid and ambiguous regulations. To mitigate these risks, we propose thirteen principles for responsible AI at work.
Love it or loath it, the rapid expansion of AI will not slow down anytime soon. But AI blunders can quickly damage a brand’s reputation — just ask Microsoft’s first chatbot, Tay. In the tech race, all leaders fear being left behind if they slow down while others don’t. It’s a high-stakes situation where cooperation seems risky, and defection tempting. This “prisoner’s dilemma” (as it’s called in game theory) poses risks to responsible AI practices. Leaders, prioritizing speed to market, are driving the current AI arms race in which major corporate players are rushing products and potentially short-changing critical considerations like ethical guidelines, bias detection, and safety measures. For instance, major tech corporations are laying off their AI ethics teams precisely at a time when responsible actions are needed most.
It’s also important to recognize that the AI arms race extends beyond the developers of large language models (LLMs) such as OpenAI, Google, and Meta. It encompasses many companies utilizing LLMs to support their own custom applications. In the world of professional services, for example, PwC announced it is deploying AI chatbots for 4,000 of their lawyers, distributed across 100 countries. These AI-powered assistants will “help lawyers with contract analysis, regulatory compliance work, due diligence, and other legal advisory and consulting services.” PwC’s management is also considering expanding these AI chatbots into their tax practice. In total, the consulting giant plans to pour $1 billion into “generative AI” — a powerful new tool capable of delivering game-changing boosts to performance.
In a similar vein, KPMG launched its own AI-powered assistant, dubbed KymChat, which will help employees rapidly find internal experts across the entire organization, wrap them around incoming opportunities, and automatically generate proposals based on the match between project requirements and available talent. Their AI assistant “will better enable cross-team collaboration and help those new to the firm with a more seamless and efficient people-navigation experience.”
Slack is also incorporating generative AI into the development of Slack GPT, an AI assistant designed to help employees work smarter not harder. The platform incorporates a range of AI capabilities, such as conversation summaries and writing assistance, to enhance user productivity.
These examples are just the tip of the iceberg. Soon hundreds of millions of Microsoft 365 users will have access to Business Chat, an agent that joins the user in their work, striving to make sense of their Microsoft 365 data. Employees can prompt the assistant to do everything from developing status report summaries based on meeting transcripts and email communication to identifying flaws in strategy and coming up with solutions.
This rapid deployment of AI agents is why Arvind Krishna, CEO of IBM, recently wrote that, “[p]eople working together with trusted A.I. will have a transformative effect on our economy and society … It’s time we embrace that partnership — and prepare our workforces for everything A.I. has to offer.” Simply put, organizations are experiencing exponential growth in the installation of AI-powered tools and firms that don’t adapt risk getting left behind.
AI Risks at Work
Unfortunately, remaining competitive also introduces significant risk for both employees and employers. For example, a 2022 UNESCO publication on “the effects of AI on the working lives of women” reports that AI in the recruitment process, for example, is excluding women from upward moves. One study the report cites that included 21 experiments consisting of over 60,000 targeted job advertisements found that “setting the user’s gender to ‘Female’ resulted in fewer instances of ads related to high-paying jobs than for users selecting ‘Male’ as their gender.” And even though this AI bias in recruitment and hiring is well-known, it’s not going away anytime soon. As the UNESCO report goes on to say, “A 2021 study showed evidence of job advertisements skewed by gender on Facebook even when the advertisers wanted a gender-balanced audience.” It’s often a matter of biased data which will continue to infect AI tools and threaten key workforce factors such as diversity, equity, and inclusion.
Discriminatory employment practices may be only one of a cocktail of legal risks that generative AI exposes organizations to. For example, OpenAI is facing its first defamation lawsuit as a result of allegations that ChatGPT produced harmful misinformation. Specifically, the system produced a summary of a real court case which included fabricated accusations of embezzlement against a radio host in Georgia. This highlights the negative impact on organizations for creating and sharing AI generated information. It underscores concerns about LLMs fabricating false and libelous content, resulting in reputational damage, loss of credibility, diminished customer trust, and serious legal repercussions.
In addition to concerns related to libel, there are risks associated with copyright and intellectual property infringements. Several high-profile legal cases have emerged where the developers of generative AI tools have been sued for the alleged improper use of licensed content. The presence of copyright and intellectual property infringements, coupled with the legal implications of such violations, poses significant risks for organizations utilizing generative AI products. Organizations can improperly use licensed content through generative AI by unknowingly engaging in activities such as plagiarism, unauthorized adaptations, commercial use without licensing, and misusing Creative Commons or open-source content, exposing themselves to potential legal consequences.
The large-scale deployment of AI also magnifies the risks of cyberattacks. The fear amongst cybersecurity experts is that generative AI could be used to identify and exploit vulnerabilities within business information systems, given the ability of LLMs to automate coding and bug detection, which could be used by malicious actors to break through security barriers. There’s also the fear of employees accidentally sharing sensitive data with third-party AI providers. A notable instance involves Samsung staff unintentionally leaking trade secrets through ChatGPT while using the LLM to review source code. Due to their failure to opt out of data sharing, confidential information was inadvertently provided to OpenAI. And even though Samsung and others are taking steps to restrict the use of third-party AI tools on company-owned devices, there’s still the concern that employees can leak information through the use of such systems on personal devices.
On top of these risks, businesses will soon have to navigate nascent, varied, and somewhat murky regulations. Anyone hiring in New York City, for instance, will have to ensure their AI-powered recruitment and hiring tech doesn’t violate the City’s “automated employment decision tool” law. To comply with the new law, employers will need to take various steps such as conducting third-party bias audits of their hiring tools and publicly disclosing the findings. AI regulation is also scaling up nationally with the Biden-Harris administration’s “Blueprint for an AI Bill of Rights” and internationally with the EU’s AI Act, which will mark a new era of regulation for employers.
This growing nebulous of evolving regulations and pitfalls is why thought leaders such as Gartner are strongly suggesting that businesses “proceed but don’t over pivot” and that they “create a task force reporting to the CIO and CEO” to plan a roadmap for a safe AI transformation that mitigates various legal, reputational, and workforce risks. Leaders dealing with this AI dilemma have important decision to make. On the one hand, there is a pressing competitive pressure to fully embrace AI. However, on the other hand, a growing concern is arising as the implementation of irresponsible AI can result in severe penalties, substantial damage to reputation, and significant operational setbacks. The concern is that in their quest to stay ahead, leaders may unknowingly introduce potential time bombs into their organization, which are poised to cause major problems once AI solutions are deployed and regulations take effect.
For example, the National Eating Disorder Association (NEDA) recently announced it was letting go of its hotline staff and replacing them with their new chatbot, Tessa. However, just days before making the transition, NEDA discovered that their system was promoting harmful advice such as encouraging people with eating disorders to restrict their calories and to lose one to two pounds per week. The World Bank spent $1 billion to develop and deploy an algorithmic system, called Takaful, to distribute financial assistance that Human Rights Watch now says ironically creates inequity. And two lawyers from New York are facing possible disciplinary action after using ChatGPT to draft a court filing that was found to have several references to previous cases that did not exist. These instances highlight the need for well-trained and well-supported employees at the center of this digital transformation. While AI can serve as a valuable assistant, it should not assume the leading position.
Principles for Responsible AI at Work
To help decision-makers avoid negative outcomes while also remaining competitive in the age of AI, we’ve devised several principles for a sustainable AI-powered workforce. The principles are a blend of ethical frameworks from institutions like the National Science Foundation as well as legal requirements related to employee monitoring and data privacy such as the Electronic Communications Privacy Act and the California Privacy Rights Act. The steps for ensuring responsible AI at work include:
- Informed Consent. Obtain voluntary and informed agreement from employees to participate in any AI-powered intervention after the employees are provided with all the relevant information about the initiative. This includes the program’s purpose, procedures, and potential risks and benefits.
- Aligned Interests. The goals, risks, and benefits for both the employer and employee are clearly articulated and aligned.
- Opt In & Easy Exits. Employees must opt into AI-powered programs without feeling forced or coerced, and they can easily withdraw from the program at any time without any negative consequences and without explanation.
- Conversational Transparency. When AI-based conversational agents are used, the agent should formally reveal any persuasive objectives the system aims to achieve through the dialogue with the employee.
- Debiased and Explainable AI. Explicitly outline the steps taken to remove, minimize, and mitigate bias in AI-powered employee interventions—especially for disadvantaged and vulnerable groups—and provide transparent explanations into how AI systems arrive at their decisions and actions.
- AI Training and Development. Provide continuous employee training and development to ensure the safe and responsible use of AI-powered tools.
- Health and Well-Being. Identify types of AI-induced stress, discomfort, or harm and articulate steps to minimize risks (e.g., how will the employer minimize stress caused by constant AI-powered monitoring of employee behavior).
- Data Collection. Identify what data will be collected, if data collection involves any invasive or intrusive procedures (e.g., the use of webcams in work-from-home situations), and what steps will be taken to minimize risk.
- Data. Disclose any intention to share personal data, with whom, and why.
- Privacy and Security. Articulate protocols for maintaining privacy, storing employee data securely, and what steps will be taken in the event of a privacy breach.
- Third Party Disclosure. Disclose all third parties used to provide and maintain AI assets, what the third party’s role is, and how the third party will ensure employee privacy.
- Communication. Inform employees about changes in data collection, data management, or data sharing as well as any changes in AI assets or third-party relationships.
- Laws and Regulations. Express ongoing commitment to comply with all laws and regulations related to employee data and the use of AI.
We encourage leaders to urgently adopt and develop this checklist in their organizations. By applying such principles, leaders can ensure rapid and responsible AI deployment.

Achieve Biz Explosion Conference Scheduled for October 20th-21st, 2023

Yoseph Assefa, Loan Officer with American Financing, Interviewed on the Elite Real Estate Leaders Podcast

Frank Tobin, Executive Chairman of GomSpace North America, Discusses Partnering for Faster and More Assured Mission Success on The Space Industry Podcast

Flexible, shorter-term apartment startups gain more traction

Hiring a Remote Worker? It Takes More Than an Internet Connection

Six Office Remodels That Will Help Improve Work Culture
Trending
-
News5 days ago
Frank Tobin, Executive Chairman of GomSpace North America, Discusses Partnering for Faster and More Assured Mission Success on The Space Industry Podcast
-
News6 days ago
BINE INTERNATIONAL Announces Dubai Investment and Networking Event (DINE 2023) at JW Marriott Marquis Hotel
-
News6 days ago
Miriam Divinsky, Ph.D., Spiritual Advisor, Launches Book on Amazon Titled: “Playing The Game Of Life And Business To Win: Search For Truth And Enlightenment.”
-
News6 days ago
Elite Resource Team Introduces the “Team Based Model Certification”
-
News6 days ago
LaWanna Bradford Earns President’s Lifetime Achievement Award for 4000 Volunteer Hours
-
News2 days ago
Achieve Biz Explosion Conference Scheduled for October 20th-21st, 2023
-
News6 days ago
Dr. Patricia Rogers’s Latest Book Earns International Bestseller Status and Emerges as an Amazon Hot New Release in Four Categories
-
News2 days ago
Yoseph Assefa, Loan Officer with American Financing, Interviewed on the Elite Real Estate Leaders Podcast